Semilinear Representations Over Some Rational Function Fields

Tao Qin

NRU HSE

June 16 2022

Representations

Definition of Smooth Rep

A smooth representation of a topological group G is a vector space V with a G-action and such that for any $v \in V$, the stabilizer of v is open in G.

Definition of Semilinear Rep

Let K be a field with a G-action (by field automorphisms), let $K\langle G\rangle$ be the group ring, namely, it consists of elements of the form $\sum\limits_{i=1}^n a_i[g_i]$ with $a_i\in K$ and $g_i\in G$. The multiplication formula is given by $a[g]\cdot b[h]=ab^g[gh]$. A K-semilinear representation of G is just a left $K\langle G\rangle$ -module.

Trivial Example

Take K to be a G-field. Let S be a G-set. Similarly, we can form the set K[S], where G acts diagonally. It is then a K-semilinear representation of G.

Background

Let $G := \mathfrak{G}_{\Psi}$ be the symmetric group of an infinite set Ψ and K is a G-field. The main object we are interested is the category of smooth K-semilinear representations of G, denoted by $Sm_K(G)$. There are many interesting questions about this category, for example, to investigate the Gabriel spectrum of this category (for some specific field). P-skip slide

Goal

In particular, we are interested in the simple objects(i.e. irreducible representations) in $Sm_K(G)$. A natural question would be:

Question

Given any positive integer n, can we find some K such that there exists a simple object of dimension n in $Sm_K(G)$?

A first step to this question may be trying to construct examples of $2,3,4\cdots$ dimensional examples of simple objects, with a choice of K.

Choice of K

The most natural G-field is $k(\Psi)$, the rational function field over the infinite set Ψ of variables. However, the category $Sm_{k(\Psi)}(G)$ only admits 1-dimensional simple objects. \Rightarrow skip slide The next choice of K is some G-subfield of $k(\Psi)$. In particular, the Galois case is much easier.

Galois Case

Case (1)

 $K := k(\Psi)^H$ where H is a finite subgroup of $Aut_G(k(\Psi)) \cong Aut(k(x)|k) \cong PGL(2,k)$ where x is any variable in Ψ .

Case (2)

 $K := L^H$ where $k(\Psi)|L$ is a transcendental extension of G-fields and H is a finite subgroup of $Aut_G(L)$.

Method

Make use of the linear representation of H over k, for each irreducible representation ρ , we may form $V_{\rho} := Hom_{k[H]}(\rho, k(\Psi))$. It's an object in $Sm_K(G)$.

Theorem

 V_{ρ} is irreducible and $\dim_{\mathcal{K}} V_{\rho} = \dim_{k} \rho$.

Case (1)

The possible finite subgroups of PGL(2, k) are rather limited. They are $\mathbb{Z}/r\mathbb{Z}$, D_r , A_4 , S_4 , A_5 .

Cyclic groups only yield one-dimensional examples. D_r gives us (many) 2-dimensional examples. A_4 gives us 3-dimensional examples. S_4 is almost the same as A_4 . A_5 will give 3, 4, 5-dimensional examples.

Remark

Of course some assumptions need to be put on the base field k.

Case (2)

Theorem

If char(k) = 0 and L is algebraically closed in $k(\Psi)$, then the transcendence degree of $k(\Psi)|L$ is no more than 3. •• skip slide

We need to compute the automorphism group Aut_GL .

Case(2)

The possible automorphism groups are either $\mathbb{Z}/2\mathbb{Z}$ or trivial group or k^* , the multiplicative group of base field k. So it will only generate 1-dimensional examples.

Non-Galois Case

For example, $k(\Psi)^{A_4}|k(\Psi)^{A_5}$. For subfields K of $k(\Psi)$ over which $k(\Psi)$ is finite non-Galois, it turns out it's almost the same as the finite case:

Assume char k = 0, $K = L^H$ where $L = k(a)(\Psi)$ with k(a)|k finite Galois extension. And H is a finite subgroup of $G(k(a)|k) \ltimes PGL(2, k(a))$

Extensions

We have considered the G-subfields of $k(\Psi)$. It's natural to consider G-extensions $L|k(\Psi)$ as well. However, if we require $L^G=k$, that the extension will preserve the fixed field, then there are almost no non-trivial examples. \bullet skip slide

Summary and Insight

Consider the G-subfields of $k(\Psi)$, we can construct 2, 3, 4, 5-dimensional simple objects in $Sm_K(G)$. But they're all we can get in this way.

In general, it's plausible to construct more examples by considering the Cremona groups.

End

Thanks!

Theorem(M.Rovinsky)

```
Up to isomorphism of \mathfrak{G}_{\Psi}-fields, (1) If tr.deg(k(\Psi)|K)=3, then K=k(\frac{x-y}{x-w}\frac{z-w}{z-y}|x,y,z,w) pairwise different in \Psi); (2) If tr.deg(k(\Psi)|K)=2, then K=k(\frac{x-y}{x-z}|x,y,z) pairwise different in \Psi); (3) If tr.deg(k(\Psi)|K)=1, then either K_1=k(x-y|x,y\in\Psi) or K_2=k(\frac{x}{y}|x,y\in\Psi). \Longrightarrow skip slide
```

Gabriel Spectrum

The Gabriel spectrum S of a grothendieck category $\mathfrak C$ is a topological space. The points of the space consists of isomorphism classes of indecomposable injectives in $\mathfrak C$. For any $X \in \mathfrak C$, set $[X] := \{E \in S | Hom(X, E) = 0\}$. Take [X] as closed subsets of S.

Take R to be a noetherian unital commutative ring and \mathfrak{M} is the category of modules over R. Then the Gabriel spectrum of \mathfrak{M} is homeomorphic to the usual prime spectrum Spec(R).

Theorems

Theorem 1(M. Rovinsky)

Let K be a G-subfield of $k(\Psi)$, then any smooth K-semilinear representation of G can be embedded into a direct product of copies of $k(\Psi)$; any smooth $k(\Psi)$ -semilinear representation of G of finite length is isomorphic to a direct sum of copies of $k(\Psi)$.

→ skip slide

Theorem 2(M. Rovinsky)

Let Y be a geometrically irreducible k-variety. If we have a G-extension $k(\Psi)(Y)|k(\Psi)$, then there exists a geometrically irreducible k-variety Y' such that $(k(\Psi)(Y))^G \cong k(Y')$. Moreover, $Y_{k'}$ is birational to $Y'_{k'}$ for a finite field extension k'|k.

→ skip slide

